SPIRAL out of convexity: sparsity-regularized algorithms for photon-limited imaging

نویسندگان

  • Zachary T. Harmany
  • Roummel F. Marcia
  • Rebecca Willett
چکیده

The observations in many applications consist of counts of discrete events, such as photons hitting a detector, which cannot be effectively modeled using an additive bounded or Gaussian noise model, and instead require a Poisson noise model. As a result, accurate reconstruction of a spatially or temporally distributed phenomenon (f) from Poisson data (y) cannot be accomplished by minimizing a conventional `2-`1 objective function. The problem addressed in this paper is the estimation of f from y in an inverse problem setting, where (a) the number of unknowns may potentially be larger than the number of observations and (b) f admits a sparse representation. The optimization formulation considered in this paper uses a negative Poisson log-likelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). This paper describes computational methods for solving the constrained sparse Poisson inverse problem. In particular, the proposed approach incorporates key ideas of using quadratic separable approximations to the objective function at each iteration and computationally efficient partition-based multiscale estimation methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparsity-regularized image reconstruction of decomposed K-edge data in spectral CT.

The development of spectral computed tomography (CT) using binned photon-counting detectors has garnered great interest in recent years and has enabled selective imaging of K-edge materials. A practical challenge in CT image reconstruction of K-edge materials is the mitigation of image artifacts that arise from reduced-view and/or noisy decomposed sinogram data. In this note, we describe and in...

متن کامل

Sparsity regularization of the diffusion coefficient problem: well-posedness and convergence rates

In this paper, we investigate sparsity regularization for the diffusion coefficient identification problem. Here, the regularization method is incorporated with the energy functional approach. The advantages of our approach are to deal with convex minimization problems. Therefore, the well-posedness of the problem is obtained without requiring regularity property of the parameter. The convexity...

متن کامل

Improved dynamic MRI reconstruction by exploiting sparsity and rank-deficiency.

In this paper we address the problem of dynamic MRI reconstruction from partially sampled K-space data. Our work is motivated by previous studies in this area that proposed exploiting the spatiotemporal correlation of the dynamic MRI sequence by posing the reconstruction problem as a least squares minimization regularized by sparsity and low-rank penalties. Ideally the sparsity and low-rank pen...

متن کامل

A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM

Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...

متن کامل

Fast Algorithm of High-resolution Microwave Imaging Using the Non-parametric Generalized Reflectivity Model

This paper presents an efficient algorithm of high-resolution microwave imaging based on the concept of generalized reflectivity. The contribution made in this paper is two-fold. We introduce the concept of non-parametric generalized reflectivity (GR, for short) as a function of operational frequencies and view angles, etc. The GR extends the conventional Born-based imaging model, i.e., singles...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010